Split A Pandas Dataframe Into Multiple Columns
Target I have a pandas dataframe as shown below and would like to split it where there is a blank-space, separating the 'command' and the float value. Dataframe - df e.g:
Solution 1:
My guess is you are attempting to call the "ROW" attribute for the DF, which does not exist. If you are attempting to do operations to select rows, I would suggest the .itterows() call to loop over just the rows you want at select indexes! Here is the best solution for what I think you are trying to achieve :)
import pandas as pd
Recreated Dummy Data
content = ['cl_bob_lower_amt"0"',
'cl_bobamt_lat"0"',
'cl_bobamt_vert"0"',
'cl_bobcycle"2"',
'cl_viewmodel_shift_left_amt"0"',
'cl_viewmodel_shift_right_amt"0"',]
Original Dataframe created
df = pd.DataFrame(content, columns = ['Value'])
Create a new dataframe (or re-assign to existing DF) by using .split call on Value.str
split_df = pd.DataFrame(df.Value.str.split(" ").tolist(), columns=["Command", "Value"])
Results:
Command Value
0 cl_bob_lower_amt "0"
1 cl_bobamt_lat "0"
2 cl_bobamt_vert "0"
3 cl_bobcycle "2"
4 cl_viewmodel_shift_left_amt "0"
5 cl_viewmodel_shift_right_amt "0"
Solution 2:
df['command'], df['value'] = df["0"].str.split().str
df
0 command value
432 cl_bob_lower_amt "0" cl_bob_lower_amt "0"
433 cl_bobamt_lat "0" cl_bobamt_lat "0"
434 cl_bobamt_vert "0" cl_bobamt_vert "0"
435 cl_bobcycle "2" cl_bobcycle "2"
436 cl_viewmodel_shift_left_amt "0" cl_viewmodel_shift_left_amt "0"
437 cl_viewmodel_shift_right_amt "0" cl_viewmodel_shift_right_amt "0"
If the column is an integer 0
df['command'], df['value'] = df[0].str.split().str
Post a Comment for "Split A Pandas Dataframe Into Multiple Columns"