How To Run Rfecv With Svc In Sklearn
I am trying to perform Recursive Feature Elimination with Cross Validation (RFECV) with GridSearchCV as follows using SVC as the classifier. My code is as follows. X = df[my_featur
Solution 1:
To look at more feature selection implementations you can have a look at:
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.feature_selection
As an example, in the next link they use PCA with k-best feature selection and svc.
An example of use would be, modified form the previous link for more simplicity:
iris = load_iris()
X, y = iris.data, iris.target
# Maybe some original features where good, too?
selection = SelectKBest()
# Build SVC
svm = SVC(kernel="linear")
# Do grid search over k, n_components and C:
pipeline = Pipeline([("features", selection), ("svm", svm)])
param_grid = dict(features__k=[1, 2],
svm__C=[0.1, 1, 10])
grid_search = GridSearchCV(pipeline, param_grid=param_grid, cv=5, verbose=10)
grid_search.fit(X, y)
print(grid_search.best_estimator_)
Solution 2:
emmm...in sklearn 0.19.2,The problem seems to have been solved.My code is similar to yours, but it works:
svc = SVC(
kernel = 'linear',
probability = True,
random_state = 1 )
rfecv = RFECV(
estimator = svc,
scoring = 'roc_auc'
)
rfecv.fit(train_values,train_Labels)
selecInfo = rfecv.support_
selecIndex = np.where(selecInfo==1)
Post a Comment for "How To Run Rfecv With Svc In Sklearn"