Pandas: Split String, And Count Values?
I've got a pandas dataset with a column that's a comma-separated string, e.g. 1,2,3,10: data = [ { 'id': 1, 'score': 9, 'topics': '11,22,30' }, { 'id': 2, 'score': 7, 'topics':
Solution 1:
unnest then groupby
and agg
df.topics=df.topics.str.split(',')
New_df=pd.DataFrame({'topics':np.concatenate(df.topics.values),'id':df.id.repeat(df.topics.apply(len)),'score':df.score.repeat(df.topics.apply(len))})
New_df.groupby('topics').score.agg(['count','mean'])
Out[1256]:
count mean
topics
125.01128.01216.01825.52219.03046.5
Solution 2:
In [111]: defmean1(x): return np.array(x).astype(int).mean()
In [112]: df.topics.str.split(',', expand=False).agg([mean1, len])
Out[112]:
mean1 len021.0000003119.6666673214.3333333316.3333333
Solution 3:
This is one way. Reindex & stack, then groupby & agg.
import pandas as pd
data = [
{ 'id': 1, 'score': 9, 'topics': '11,22,30' },
{ 'id': 2, 'score': 7, 'topics': '11,18,30' },
{ 'id': 3, 'score': 6, 'topics': '1,12,30' },
{ 'id': 4, 'score': 4, 'topics': '1,18,30' }
]
df = pd.DataFrame(data)
df.topics = df.topics.str.split(',')
df2 = pd.DataFrame(df.topics.tolist(), index=[df.id, df.score])\
.stack()\
.reset_index(name='topics')\
.drop('level_2', 1)
df2.groupby('topics').score.agg(['count', 'mean']).reset_index()
Post a Comment for "Pandas: Split String, And Count Values?"