Python - Return Intersection Of Two Arrays
Solution 1:
If you want to keep duplicates, like in your examples, you can use a list comprehension:
defintersection(list_a, list_b):
return [ e for e in list_a if e in list_b ]
which produces:
in:
[(255, 255, 255), (255, 255, 255)]
[(255, 255, 255), (255, 255, 255)]
out:
[(255, 255, 255), (255, 255, 255)]
in:
[(100, 100, 100), (255, 255, 255)]
[(255, 255, 255), (255, 255, 255)]
out:
[(255, 255, 255)]
If you want uniquie combinations between the lists (sets) though:
def intersection(a, b):
return list(set(a).intersection(b))
which produces:
in:
[(255, 255, 255), (255, 255, 255)]
[(255, 255, 255), (255, 255, 255)]
out:
[(255, 255, 255)]
in:
[(100, 100, 100), (255, 255, 255)]
[(255, 255, 255), (255, 255, 255)]
out:
[(255, 255, 255)]
Cheers!
Solution 2:
Not sure how big your arrays will get, but if they remain fairly small, this could work:
import numpy as np
arr1 = np.array([(255, 255, 255), (255, 255, 255)])
arr2 = np.array([(255, 255, 255), (255, 255, 255)])
intersectedArr = []
for a1, a2 in zip(arr1, arr2):
if np.array_equal(a1, a2):
intersectedArr.append(a1)
print(np.array(intersectedArr))
arr1 = np.array([(100, 100, 100), (255, 255, 255)])
arr2 = np.array([(255, 255, 255), (255, 255, 255)])
intersectedArr = []
for a1, a2 in zip(arr1, arr2):
if np.array_equal(a1, a2):
intersectedArr.append(a1)
print(np.array(intersectedArr))
Solution 3:
how about a numpy
answer?
import numpy as np
arr1 = np.array([(255, 255, 255), (255, 255, 25)]) # changed some to 25
arr2 = np.array([(255, 25, 255), (255, 255, 25)])
arr1[np.where(arr1==arr2)]
array([255, 255, 255, 255, 25])
2nd example
arr1 = np.array([(100, 100, 100), (255, 255, 255)])
arr2 = np.array([(255, 255, 255), (255, 255, 255)])
arr1[np.where(arr1==arr2)]
array([255, 255, 255])
Solution 4:
NOTE: This assumes [a, b, c]
and [b, c, a]
gives [a, b, c]
, that is the order of elements is ignored.
OK, I've done a little experimenting and this might be what you are after. Given:
arr1a = np.array([(255, 255, 255), (255, 255, 255)])
arr1b = np.array([(100, 100, 100), (255, 255, 255)])
arr2 = np.array([(255, 255, 255), (255, 255, 255)])
Then we can find an intersection with:
np.array([item in arr2 for item in arr1a])
ie, for each element in arr1a
, check to see it appears in arr2
also. This gives a result of:
>>>array([ True, True], dtype=bool)
Similarly:
np.array([item in arr2 for item in arr1b])
>>> array([False, True], dtype=bool)
Now, we can use this result to pick the common values from the original lists:
mask = np.array([item in arr2 for item in arr1a])
arr1a[mask]
>>> array([[255, 255, 255],
[255, 255, 255]])
And:
mask = np.array([item in arr2 for item in arr1b])
arr1b[mask]
>>> array([[255, 255, 255]])
Solution 5:
For larger arrays it might help to use pandas' groupby and cumcount:
In [11]: df1 = pd.DataFrame(arr1)
In [12]: df1["cumcount"] = df1.groupby([0, 1, 2]).cumcount()
In [13]: df1
Out[13]:
012 cumcount
0100100100012552552550
In [14]: df2 = pd.DataFrame(arr2)
In [15]: df2["cumcount"] = df2.groupby([0, 1, 2]).cumcount()
In [16]: df2
Out[16]:
012 cumcount
0255255255012552552551
Now a merge gets you the array you desire:
In [21]: df1.merge(df1).iloc[:, :3].values
Out[21]:
array([[100, 100, 100],
[255, 255, 255]])
In [22]: df1.merge(df2).iloc[:, :3].values
Out[22]: array([[255, 255, 255]])
In [23]: df2.merge(df2).iloc[:, :3].values
Out[23]:
array([[255, 255, 255],
[255, 255, 255]])
Post a Comment for "Python - Return Intersection Of Two Arrays"