Error Converting Pil B&w Images To Numpy Arrays
Solution 1:
I believe you've found a bug in PIL! (or possibly in numpy, but I'd wager it's on the PIL side of things...)
@c's answer above gives one workaround (use im.getdata()), though I'm not sure why numpy.asarry(image) is segfaulting for him... (Old version of PIL and/or numpy, maybe?) It works for me, but produces gibberish on 1-bit PIL images (and works for everything else, I use it frequently!).
Another workaround is to convert the BW image back to grayscale (mode 'L') before converting to a numpy array.
Converting the BW image back to grayscale before converting to a numpy array seems to be faster, if speed is important.
In [35]: %timeit np.array(im_bw.convert('L')).astype(np.uint8)
10000 loops, best of 3: 28 us per loop
In [36]: %timeit np.reshape(im_bw.getdata(), im_bw.size)
10000 loops, best of 3: 57.3 us per loop
On a seperate note, if you're modifying the array contents in-place, be sure to use numpy.array instead of numpy.asarray, as the latter will create an array from the PIL image instance without copying memory, thus returning a read-only array. Just mentioning this because I'm using asarray() below...
Here's a standalone example which confirms the bug...
import numpy as np
import Image
x = np.arange(256, dtype=np.uint8).reshape((16,16))
print'Created array'print x
im = Image.fromarray(x)
print'Vales in grayscale PIL image using numpy.asarray <-- Works as expected'print np.asarray(im)
print'Converted to BW PIL image...'
im_bw = im.convert('1')
print'Values in BW PIL image, using Image.getdata() <-- Works as expected'print' (Not a simple threshold due to dithering...)'
# Dividing by 255 to make the comparison easier
print np.reshape(im_bw.getdata(), (16, 16)) / 255print'Values in BW PIL image using numpy.asarray() <-- Unexpected!'print' (Same occurs when using numpy.array() to copy and convert.)'print np.asarray(im_bw).astype(np.uint8)
print'Workaround, convert back to type "L" before array conversion'print np.array(im_bw.convert('L')).astype(np.uint8) / 255
Which outputs:
Created array
[[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15][ 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31][ 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47][ 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63][ 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79][ 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95][ 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111][112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127][128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143][144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159][160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175][176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191][192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207][208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223][224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239][240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255]]
Vales in grayscale PIL image using numpy.asarray <-- Works as expected
[[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15][ 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31][ 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47][ 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63][ 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79][ 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95][ 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111][112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127][128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143][144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159][160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175][176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191][192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207][208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223][224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239][240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255]]
Converted to BW PIL image...
Values in BW PIL image, using Image.getdata() <-- Works as expected
(Not a simple threshold due to dithering...)
[[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0][0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0][0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0][0 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0][0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 1][0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0][1 0 1 0 1 0 1 0 1 0 0 0 1 1 0 1][0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 0][1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1][0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1][1 1 0 1 1 1 1 0 1 1 0 1 1 0 1 1][1 0 1 1 0 1 0 1 1 0 1 1 0 1 1 0][1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1][1 0 1 0 1 1 0 1 1 0 1 1 1 0 1 1][1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1][1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]]
Values in BW PIL image using numpy.asarray() <-- Unexpected!
(Same occurs when using numpy.array() to copy and convert.)
[[0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1][1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1][0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1][1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1][1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1][1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1][1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1][1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1][1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1][1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1][1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1][1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1][1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1][1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1][1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1][1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]]
Workaround, convert back to type "L" before array conversion
[[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0][0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0][0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0][0 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0][0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 1][0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0][1 0 1 0 1 0 1 0 1 0 0 0 1 1 0 1][0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 0][1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1][0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1][1 1 0 1 1 1 1 0 1 1 0 1 1 0 1 1][1 0 1 1 0 1 0 1 1 0 1 1 0 1 1 0][1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1][1 0 1 0 1 1 0 1 1 0 1 1 1 0 1 1][1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1][1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]]
Solution 2:
Not sure about this line:
data = numpy.array(image)
In fact, that gives me a segfault. But I just tried the following, and it works fine:
import numpy
import Image
im = Image.open("some_photo.jpg")
im = im.convert("1")
pixels = im.getdata() # returns 1D list of pixels
n = len(pixels)
data = numpy.reshape(pixels, im.size) # turn into 2D numpy array
for row in data:
# do your processing
pass
# Check that the numpy array's data is good
im2 = Image.new("1", im.size)
im2.putdata(numpy.reshape(data, [n, 1]))
im2.show()
Solution 3:
What's your numpy version? I found that after downgrading of numpy from 1.21 to 1.20, it worked.
pip install numpy==1.20
Post a Comment for "Error Converting Pil B&w Images To Numpy Arrays"