How To Transpose Rows Separated With Blank (nan) Data To Multi-column In Python/pandas?
I'm new to python an I want to improve several excel programs I've made using VBA. Like the one below. I have a machine log which is consist of 2 Columns and average of 50,000 Rows
Solution 1:
Input data:
df = pd.read_excel("sample.xlsx", header=None, names=["Operation", "Data"])
>>> df
Operation Data
0 <Operation> NaN # begin 1st group (idx1)
1 NaN <Timestamp>value</Timestamp>
2 NaN <Type>value</Type>
3 NaN <Name>value</Name>
4 NaN <Action>value</Action
5 NaN <Data>value</Data>
6 </Operation> NaN # end 1st group (idx2)
7 <Operation> NaN # begin 2nd group (idx1)
8 NaN <Timestamp>value</Timestamp>
9 NaN <Type>value</Type>
10 NaN <Name>value</Name>
11 NaN <Action>value</Action
12 NaN <Data>value</Data>
13 </Operation> NaN # end 2nd group (idx2)
14 <Operation> NaN # begin 3rd group (idx1)
15 NaN <Timestamp>value</Timestamp>
16 NaN <Type>value</Type>
17 NaN <Name>value</Name>
18 NaN <Action>value</Action
19 </Operation> NaN # end 3rd group (idx2)
Comments inside the snippet. Below a one-line version of this code:
data = []
idx1 = df[df["Operation"].eq("<Operation>")].index # [0, 6, 13]
idx2 = df[df["Operation"].eq("</Operation>")].index # [7, 14, 19]
for i1, i2 in zip(idx1, idx2): # [(0, 7), (6, 14), (13, 19)]
# Getvalues inside the group [(1, 6), (7, 13), (14, 18)]
df1 = df["Data"].loc[i1+1:i2-1].reset_index(drop=True)
data.append(df1)
# Concatenate all operations, swap columns androws (.Transpose)
out= pd.concat(data, axis="columns").T.reset_index(drop=True)
# One line
# out= pd.concat([df["Data"].loc[i1+1:i2-1].reset_index(drop=True)
# for i1, i2 in zip(df[df["Operation"].eq("<Operation>")].index,
# df[df["Operation"].eq("</Operation>")].index)],
# axis="columns").T.reset_index(drop=True)
Output result:
>>> out
0 1 2 3 4
0 <Timestamp>value</Timestamp><Type>value</Type><Name>value</Name><Action>value</Action <Data>value</Data>
1 <Timestamp>value</Timestamp><Type>value</Type><Name>value</Name><Action>value</Action <Data>value</Data>
2 <Timestamp>value</Timestamp><Type>value</Type><Name>value</Name><Action>value</Action NaN
Post a Comment for "How To Transpose Rows Separated With Blank (nan) Data To Multi-column In Python/pandas?"