Count Number Of Rows Between Two Dates By Id In A Pandas Groupby Dataframe
Solution 1:
My usual approach for these problems is to pivot and think in terms of events changing an accumulator. Every new "stdt" we see adds +1 to the count; every "enddt" we see adds -1. (Adds -1 the next day, at least if I'm interpreting "between" the way you are. Some days I think we should ban the use of the word as too ambiguous..)
IOW, if we turn your frame to something like
>>>df.head()cidjidchangedate0110012015-01-061110112015-01-07211100-12015-01-16221101-12015-01-1717111712015-03-01
then what we want is simply the cumulative sum of change
(after suitable regrouping.) For example, something like
df["enddt"] += timedelta(days=1)
df = pd.melt(df, id_vars=["cid", "jid"], var_name="change", value_name="date")
df["change"] = df["change"].replace({"stdt": 1, "enddt": -1})
df = df.sort(["cid", "date"])
df = df.groupby(["cid", "date"],as_index=False)["change"].sum()
df["count"] = df.groupby("cid")["change"].cumsum()
new_time = pd.date_range(df.date.min(), df.date.max())
df_parts = []
for cid, group in df.groupby("cid"):
full_count = group[["date", "count"]].set_index("date")
full_count = full_count.reindex(new_time)
full_count = full_count.ffill().fillna(0)
full_count["cid"] = cid
df_parts.append(full_count)
df_new = pd.concat(df_parts)
which gives me something like
>>>df_new.head(15)countcid2015-01-03 012015-01-04 012015-01-05 012015-01-06 112015-01-07 212015-01-08 212015-01-09 212015-01-10 212015-01-11 212015-01-12 212015-01-13 212015-01-14 212015-01-15 212015-01-16 112015-01-17 01
There may be off-by-one differences with regards to your expectations; you may have different ideas about how you should handle multiple overlapping jid
s in the same time window (here they would count as 2); but the basic idea of working with the events should prove useful even if you have to tweak the details.
Solution 2:
Here is a solution I came up with (this will loop through the permutations of unique cid's and date range getting your counts):
fromitertoolsimportproductdf_new_date=pd.DataFrame(list(product(df.cid.unique(),pd.date_range(df.stdt.min(),df.enddt.max()))),columns=['cid','newdate'])df_new_date['cnt']=df_new_date.apply(lambdarow:df[(df['cid']==row['cid'])&(df['stdt']<=row['newdate'])&(df['enddt']>=row['newdate'])]['jid'].count(),axis=1)>>>df_new_date.head(20)cidnewdatecnt012015-07-01 0112015-07-02 0212015-07-03 0312015-07-04 0412015-07-05 0512015-07-06 1612015-07-07 1712015-07-08 1812015-07-09 1912015-07-10 11012015-07-11 21112015-07-12 31212015-07-13 31312015-07-14 21412015-07-15 31512015-07-16 31612015-07-17 31712015-07-18 31812015-07-19 21912015-07-20 1
You could then drop the zeros if you don't want them. I don't think this will be much better than your original solution, however.
I would like to suggest you use the following improvement on the loop provided by the @DSM solution:
df_parts=[]forcidindf.cid.unique():full_count=df[(df.cid==cid)][['cid','date','count']].set_index("date").asfreq("D",method='ffill')[['cid','count']].reset_index()df_parts.append(full_count[full_count['count']!=0])df_new=pd.concat(df_parts)>>>df_newdatecidcount02015-07-06 1112015-07-07 1122015-07-08 1132015-07-09 1142015-07-10 1152015-07-11 1262015-07-12 1372015-07-13 1382015-07-14 1292015-07-15 13102015-07-16 13112015-07-17 13122015-07-18 13132015-07-19 12142015-07-20 11152015-07-21 11162015-07-22 1102015-07-01 2112015-07-02 2122015-07-03 2132015-07-04 2142015-07-05 2152015-07-06 2162015-07-07 2272015-07-08 2282015-07-09 2292015-07-10 23102015-07-11 23112015-07-12 24122015-07-13 24132015-07-14 25142015-07-15 24152015-07-16 24162015-07-17 23172015-07-18 22182015-07-19 22192015-07-20 21202015-07-21 21
Only real improvement over what @DSM provided is that this will avoid requiring the creation of a groubby object for the loop and this will also get you all the min stdt and max enddt per cid number with no zero values.
Post a Comment for "Count Number Of Rows Between Two Dates By Id In A Pandas Groupby Dataframe"