Pandas Sum Every Value Over Certain Month Range Every Year
I want to sum data from January through June every year. I have a dataframe that looks like this: Date Value 1980-01-01 2 1980-02-01 3 1980-03-01 3 1980-04-01 2 1980-05-01 3
Solution 1:
idx = pd.Series(pd.date_range('1/1/2018', periods=100, freq='MS'),name='date')
df = pd.DataFrame(range(len(idx)), index=idx,columns=['A'])
Filter then resample.
>>>sums = df.loc[df.index.month.isin([1,2,3,4,5,6])].resample('YS').sum()>>>sums['A'].values
array([ 15, 87, 159, 231, 303, 375, 447, 519, 390], dtype=int64)
>>>sums
A
date
2018-01-01 15
2019-01-01 87
2020-01-01 159
2021-01-01 231
2022-01-01 303
2023-01-01 375
2024-01-01 447
2025-01-01 519
2026-01-01 390
>>>
I assumed that date
was the index in your example. If it is a column change you need to use the dt
accessor in the filter and specify the column name in resample
.
dfa = pd.DataFrame({'date':idx,'A':range(len(idx))})
>>> sums = dfa.loc[dfa.date.dt.month.isin([1,2,3,4,5,6])].resample('YS',on='date').sum()
>>> sums['A'].values
array([ 15, 87, 159, 231, 303, 375, 447, 519, 390], dtype=int64)
You could also resample/aggregate on a six month frequency and just take every other result - it seems to work even if months are missing from the Series.
>>>dfq = dfa.loc[::2]>>>dfq.head()
date A
0 2018-01-01 0
2 2018-03-01 2
4 2018-05-01 4
6 2018-07-01 6
8 2018-09-01 8
>>>dfc = dfq.resample('6MS', on='date').sum()>>>dfc.loc[::2].head()
A
date
2018-01-01 6
2019-01-01 42
2020-01-01 78
2021-01-01 114
2022-01-01 150
If the DataFrame only contains the first six months of each year then you don't need to filter. Just resample.
>>>dfb = dfa.loc[dfa.date.dt.month.isin([1,2,3,4,5,6])]>>>dfb.resample('YS',on='date').sum().head()
A
date
2018-01-01 15
2019-01-01 87
2020-01-01 159
2021-01-01 231
2022-01-01 303
>>>
Post a Comment for "Pandas Sum Every Value Over Certain Month Range Every Year"