Removing Incomplete Years From Pandas Dataframe
I want to remove incomplete years from a dataframe to analyse the complete years further. I've looked here but the question is old and unresolved. This post follows on from a previ
Solution 1:
Get the years
and pass to your original df and call isin
and pass dt.year
:
In [93]:years=count[count['date']>=365].indexdf[df['date'].dt.year.isin(years)]Out[93]:dateA02007-01-01 0.02074512007-01-02 0.03002422007-01-03 -0.38579332007-01-04 -0.73772042007-01-05 0.08970752007-01-06 -0.82014162007-01-07 -0.08174072007-01-08 0.23326582007-01-09 1.33622492007-01-10 0.570297102007-01-11 -0.280080112007-01-12 -1.582950122007-01-13 0.494927132007-01-14 2.065250142007-01-15 -2.406877152007-01-16 0.124046162007-01-17 -1.015604172007-01-18 1.480173182007-01-19 0.705919192007-01-20 -2.014657202007-01-21 0.130874212007-01-22 -0.138736222007-01-23 1.874702232007-01-24 -0.170154242007-01-25 -1.548015252007-01-26 -0.878455262007-01-27 -0.871497272007-01-28 1.992482282007-01-29 0.565247292007-01-30 1.257662.........2892 2014-12-02 -1.0522772893 2014-12-03 0.1230172894 2014-12-04 -0.9709472895 2014-12-05 -0.8212082896 2014-12-06 -0.0271182897 2014-12-07 -0.1000332898 2014-12-08 0.9547332899 2014-12-09 0.3889982900 2014-12-10 0.6674432901 2014-12-11 1.5808042902 2014-12-12 0.7240112903 2014-12-13 -2.1565072904 2014-12-14 0.7362362905 2014-12-15 0.8636742906 2014-12-16 -0.2049922907 2014-12-17 0.9763072908 2014-12-18 1.4563672909 2014-12-19 -0.5168542910 2014-12-20 -0.1402912911 2014-12-21 1.4672252912 2014-12-22 0.9575422913 2014-12-23 2.0614772914 2014-12-24 0.2021042915 2014-12-25 0.8061402916 2014-12-26 -0.4783802917 2014-12-27 1.1091582918 2014-12-28 -0.5984172919 2014-12-29 -1.2839222920 2014-12-30 0.5463902921 2014-12-31 -0.640812
[2922 rowsx2columns]
This will filter the df so that only those dates with full complement of days remain
Post a Comment for "Removing Incomplete Years From Pandas Dataframe"