Pandas Reindex Multiindex And Shift Values By Second Index
I have a pandas DataFrame looking like this : x1 x2 x3 x4 Date Time
Solution 1:
The fastest way I can think of is to overwrite the entire first level (innermost level) of the MultiIndex with a 20-minute-shifted version of itself:
x.index = x.index.set_levels(x.index.levels[1].shift(20, 'min'), level=1)
Example
x = pd.DataFrame(index=pd.MultiIndex.from_product([pd.date_range('2017-01-03', '2017-01-06', freq='1D'),
pd.date_range('09:00', '17:00', freq='20min')]))
x.loc[:, 'x1'] = list(range(len(x)))
x
x1
2017-01-03 2018-06-14 09:00:00 0
2018-06-14 09:20:00 1
2018-06-14 09:40:00 2
2018-06-14 10:00:00 3
2018-06-14 10:20:00 4
... ..
2017-01-06 2018-06-14 15:40:00 95
2018-06-14 16:00:00 96
2018-06-14 16:20:00 97
2018-06-14 16:40:00 98
2018-06-14 17:00:00 99
x.index = x.index.set_levels(x.index.levels[1].shift(20, 'min'), level=1)
x
x1
2017-01-03 2018-06-14 09:20:00 0
2018-06-14 09:40:00 1
2018-06-14 10:00:00 2
2018-06-14 10:20:00 3
2018-06-14 10:40:00 4
... ..
2017-01-06 2018-06-14 16:00:00 95
2018-06-14 16:20:00 96
2018-06-14 16:40:00 97
2018-06-14 17:00:00 98
2018-06-14 17:20:00 99
Post a Comment for "Pandas Reindex Multiindex And Shift Values By Second Index"