Ensemble Learning Python-random Forest, Svm, Knn
I am trying to ensemble the classifiers Random forest, SVM and KNN. Here to ensemble, I'm using the VotingClassifier with GridSearchCV. The code is working fine if I try with the L
Solution 1:
The code posted is the following:
clf11 = RandomForestClassifier(n_estimators=100,criterion="entropy")
clf12 = KNeighborsClassifier(n_neighbors=best_k)
clf13 = SVC(kernel='rbf', probability=True)
eclf1 = VotingClassifier(estimators=[('lr', clf11), ('rf', clf12), ('gnb', clf13)],voting='hard')
params = {'lr__C': [1.0, 100.0], 'rf__n_estimators': [20, 200]}
Here, you are using hiperparameters C for RandomForestClassifier, which will not work.
You must use hiperparameters that are valid for the classifiers that are being used. Maybe the names "lr", "rf" and "gnb" for the estimators show be replaced by other more adequate and then selecting hiperparameters valid for the different kind of classifiers
The following would work:
clf11 = RandomForestClassifier(n_estimators=100,criterion="entropy")
clf12 = KNeighborsClassifier(n_neighbors=best_k)
clf13 = SVC(kernel='rbf', probability=True)
eclf1 = VotingClassifier(estimators=[('rf', clf11), ('knn', clf12), ('svc', clf13)],voting='hard')
params = {'svc__C': [1.0, 100.0], 'rf__n_estimators': [20, 200]}
Post a Comment for "Ensemble Learning Python-random Forest, Svm, Knn"