Skip to content Skip to sidebar Skip to footer

List Of Pandas Options For Method Set_option

I couldn't find a list of options for pandas.set_option(). Does anyone know if such a list exists? The best I could find is this page : http://pandas.pydata.org/pandas-docs/dev/wh

Solution 1:

Call describe_option the link here also shows other ways of using this function:

In [37]:

pd.describe_option()

display.chop_threshold: [default: None] [currently: None]
: float or None
        ifsetto a float value, all float values smaller then the given threshold
        will be displayed as exactly 0by repr and friends.
display.colheader_justify: [default: right] [currently: right]
: 'left'/'right'
        Controls the justification of column headers. used by DataFrameFormatter.
display.column_space: [default: 12] [currently: 12]No description available.

display.date_dayfirst: [default: False] [currently: False]
: booleanWhenTrue, prints and parses dates with the day first, eg 20/01/2005
display.date_yearfirst: [default: False] [currently: False]
: booleanWhenTrue, prints and parses dates with the year first, eg 2005/01/20
display.encoding: [default: UTF-8] [currently: UTF-8]
: str/unicode
        Defaults to the detected encoding of the console.
        Specifies the encoding to be used for strings returned by to_string,
        these are generally strings meant to be displayed on the console.
display.expand_frame_repr: [default: True] [currently: True]
: boolean
        Whether to print out the full DataFrame repr for wide DataFrames
        across multiple lines, `max_columns` is still respected, but the output will
        wrap-around across multiple "pages"if it's width exceeds `display.width`.
display.float_format: [default: None] [currently: <built-in method format of str object at 0x0000000008899AA8>]
: callable
        The callable should accept a floating point number andreturn
        a stringwith the desired format of the number. This is used
        in some places like SeriesFormatter.
        See core.format.EngFormatter for an example.
display.height: [default: 60] [currently: 60]
: int
        Deprecated.
    (Deprecated, use `display.height` instead.)

display.line_width: [default: 80] [currently: 80]
: int
        Deprecated.
    (Deprecated, use `display.width` instead.)

display.max_columns: [default: 20] [currently: 20]
: int
        max_rows and max_columns are used in __repr__() methods to decide if
        to_string() or info() is used to render an objectto a string.  Incase
        python/IPython is running in a terminal this can be setto0and pandas
        will correctly auto-detect the width the terminal and swap to a smaller
        format incase all columns would not fit vertically. The IPython notebook,
        IPython qtconsole, or IDLE donot run in a terminal and hence it isnot
        possible todo correct auto-detection.
        'None' value means unlimited.
display.max_colwidth: [default: 50] [currently: 50]
: int
        The maximum width in characters of a column in the repr of
        a pandas data structure. When the column overflows, a "..."
        placeholder is embedded in the output.
display.max_info_columns: [default: 100] [currently: 100]
: int
        max_info_columns is used in DataFrame.info method to decide if
        per column information will be printed.
display.max_info_rows: [default: 1690785] [currently: 1690785]
: int or None
        max_info_rows is the maximum number of rows for which a frame will
        perform a null check on its columns when repr'ing To a console.
        The defaultis1,000,000 rows. So, if a DataFrame has more
        1,000,000 rows there will be no null check performed on the
        columns and thus the representation will take much less time to
        display in an interactive session. A value of None means always
        perform a null check when repr'ing.
display.max_rows: [default: 60] [currently: 60]
: int
        This sets the maximum number of rows pandas should output when printing
        out various output. For example, this value determines whether the repr()
        for a dataframe prints out fully or just a summary repr.
        'None' value means unlimited.
display.max_seq_items: [default: None] [currently: None]
: int or None

        when pretty-printing a long sequence, no more then `max_seq_items`
        will be printed. If items are ommitted, they will be denoted by the addition
        of"..."to the resulting string.

        Ifsetto None, the number of items to be printed is unlimited.
display.mpl_style: [default: None] [currently: None]
: bool

        Setting this to'default' will modify the rcParams used by matplotlibto give plots a more pleasing visual style bydefault.
        Setting this to None/False restores the values to their initial value.
display.multi_sparse: [default: True] [currently: True]
: boolean"sparsify" MultiIndex display (don't display repeated
        elements in outer levels within groups)
display.notebook_repr_html: [default: True] [currently: False]
: booleanWhenTrue, IPython notebook will use html representation for
        pandas objects (if it is available).
display.pprint_nest_depth: [default: 3] [currently: 3]
: int
        Controls the number of nested levels to process when pretty-printing
display.precision: [default: 7] [currently: 7]
: int
        Floating point output precision (number of significant digits). This is
        only a suggestion
display.width: [default: 80] [currently: 80]
: int
        Width of the display in characters. Incase python/IPython is running in
        a terminal this can be setto None and pandas will correctly auto-detect the
        width.
        Note that the IPython notebook, IPython qtconsole, or IDLE donot run in a
        terminal and hence it isnot possible to correctly detect the width.
mode.sim_interactive: [default: False] [currently: False]
: boolean
        Whether to simulate interactive mode for purposes of testing
mode.use_inf_as_null: [default: False] [currently: False]
: booleanTrue means treat None, NaN, INF, -INF as null (old way),
        False means None and NaN are null, but INF, -INF are not null
        (new way).

Solution 2:

This page now provides what you were looking for.

Post a Comment for "List Of Pandas Options For Method Set_option"