Skip to content Skip to sidebar Skip to footer

How Do You Split A List (or Iterable) Into Evenly Sized Chunks?

I have a list of arbitrary length, and I need to split it up into equal size chunks and operate on it. There are some obvious ways to do this, like keeping a counter and two lists,

Solution 1:

Here's a generator that yields the chunks you want:

defchunks(lst, n):
    """Yield successive n-sized chunks from lst."""for i inrange(0, len(lst), n):
        yield lst[i:i + n]

import pprint
pprint.pprint(list(chunks(range(10, 75), 10)))
[[10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
 [20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
 [30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
 [40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
 [50, 51, 52, 53, 54, 55, 56, 57, 58, 59],
 [60, 61, 62, 63, 64, 65, 66, 67, 68, 69],
 [70, 71, 72, 73, 74]]

If you're using Python 2, you should use xrange() instead of range():

defchunks(lst, n):
    """Yield successive n-sized chunks from lst."""for i in xrange(0, len(lst), n):
        yield lst[i:i + n]

Also you can simply use list comprehension instead of writing a function, though it's a good idea to encapsulate operations like this in named functions so that your code is easier to understand. Python 3:

[lst[i:i + n] for i in range(0, len(lst), n)]

Python 2 version:

[lst[i:i + n] for i in xrange(0, len(lst), n)]

Solution 2:

If you want something super simple:

defchunks(l, n):
    n = max(1, n)
    return (l[i:i+n] for i inrange(0, len(l), n))

Use xrange() instead of range() in the case of Python 2.x

Solution 3:

I know this is kind of old but nobody yet mentioned numpy.array_split:

import numpy as np

lst = range(50)
np.array_split(lst, 5)
# [array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),#  array([10, 11, 12, 13, 14, 15, 16, 17, 18, 19]),#  array([20, 21, 22, 23, 24, 25, 26, 27, 28, 29]),#  array([30, 31, 32, 33, 34, 35, 36, 37, 38, 39]),#  array([40, 41, 42, 43, 44, 45, 46, 47, 48, 49])]

Solution 4:

Directly from the (old) Python documentation (recipes for itertools):

from itertools import izip, chain, repeat

def grouper(n, iterable, padvalue=None):
    "grouper(3, 'abcdefg', 'x') --> ('a','b','c'), ('d','e','f'), ('g','x','x')"
    returnizip(*[chain(iterable, repeat(padvalue, n-1))]*n)

The current version, as suggested by J.F.Sebastian:

#from itertools import izip_longest as zip_longest # for Python 2.xfrom itertools import zip_longest # for Python 3.x#from six.moves import zip_longest # for both (uses the six compat library)def grouper(n, iterable, padvalue=None):
    "grouper(3, 'abcdefg', 'x') --> ('a','b','c'), ('d','e','f'), ('g','x','x')"
    returnzip_longest(*[iter(iterable)]*n, fillvalue=padvalue)

I guess Guido's time machine works—worked—will work—will have worked—was working again.

These solutions work because [iter(iterable)]*n (or the equivalent in the earlier version) creates one iterator, repeated n times in the list. izip_longest then effectively performs a round-robin of "each" iterator; because this is the same iterator, it is advanced by each such call, resulting in each such zip-roundrobin generating one tuple of n items.

Solution 5:

I'm surprised nobody has thought of using iter's two-argument form:

from itertools import islice

defchunk(it, size):
    it = iter(it)
    returniter(lambda: tuple(islice(it, size)), ())

Demo:

>>>list(chunk(range(14), 3))
[(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, 11), (12, 13)]

This works with any iterable and produces output lazily. It returns tuples rather than iterators, but I think it has a certain elegance nonetheless. It also doesn't pad; if you want padding, a simple variation on the above will suffice:

from itertools import islice, chain, repeat

defchunk_pad(it, size, padval=None):
    it = chain(iter(it), repeat(padval))
    returniter(lambda: tuple(islice(it, size)), (padval,) * size)

Demo:

>>> list(chunk_pad(range(14), 3))
[(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, 11), (12, 13, None)]
>>> list(chunk_pad(range(14), 3, 'a'))
[(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, 11), (12, 13, 'a')]

Like the izip_longest-based solutions, the above always pads. As far as I know, there's no one- or two-line itertools recipe for a function that optionally pads. By combining the above two approaches, this one comes pretty close:

_no_padding = object()

defchunk(it, size, padval=_no_padding):
    if padval == _no_padding:
        it = iter(it)
        sentinel = ()
    else:
        it = chain(iter(it), repeat(padval))
        sentinel = (padval,) * size
    returniter(lambda: tuple(islice(it, size)), sentinel)

Demo:

>>>list(chunk(range(14), 3))
[(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, 11), (12, 13)]
>>>list(chunk(range(14), 3, None))
[(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, 11), (12, 13, None)]
>>>list(chunk(range(14), 3, 'a'))
[(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, 11), (12, 13, 'a')]

I believe this is the shortest chunker proposed that offers optional padding.

As Tomasz Gandor observed, the two padding chunkers will stop unexpectedly if they encounter a long sequence of pad values. Here's a final variation that works around that problem in a reasonable way:

_no_padding = object()
defchunk(it, size, padval=_no_padding):
    it = iter(it)
    chunker = iter(lambda: tuple(islice(it, size)), ())
    if padval == _no_padding:
        yieldfrom chunker
    else:
        for ch in chunker:
            yield ch iflen(ch) == size else ch + (padval,) * (size - len(ch))

Demo:

>>> list(chunk([1, 2, (), (), 5], 2))
[(1, 2), ((), ()), (5,)]
>>> list(chunk([1, 2, None, None, 5], 2, None))
[(1, 2), (None, None), (5, None)]

Post a Comment for "How Do You Split A List (or Iterable) Into Evenly Sized Chunks?"