How To Use Scala Udf In Pyspark?
I want to be able to use a Scala function as a UDF in PySpark package com.test object ScalaPySparkUDFs extends Serializable { def testFunction1(x: Int): Int = { x * 2 } de
Solution 1:
Agree with @user6910411, you have to call apply method directly on the function. So, your code will be.
UDF in Scala:
import org.apache.spark.sql.expressions.UserDefinedFunction
import org.apache.spark.sql.functions._
object ScalaPySparkUDFs {
def testFunction1(x: Int): Int = { x * 2 }
def getFun(): UserDefinedFunction =udf(testFunction1 _ )
}
PySpark code:
def test_udf(col):
sc = spark.sparkContext
_test_udf = sc._jvm.com.test.ScalaPySparkUDFs.getFun()
return Column(_test_udf.apply(_to_seq(sc, [col], _to_java_column)))
row = Row("Value")
numbers = sc.parallelize([1,2,3,4]).map(row).toDF()
numbers.withColumn("Result", test_udf(numbers['Value']))
Solution 2:
The question you've linked is using a Scala object
. Scala object
is a singleton and you can use apply
method directly.
Here you use a nullary function which returns an object of UserDefinedFunction
class co you have to call the function first:
_f = sc._jvm.com.test.ScalaPySparkUDFs.testUDFFunction1() # Note () at the end
Column(_f.apply(_to_seq(sc, [col], _to_java_column)))
Post a Comment for "How To Use Scala Udf In Pyspark?"