Filtering Rows Of A Dataframe Based On Values In Columns
I want to filter the rows of a dataframe that contains values less than ,say 10. import numpy as np import pandas as pd from pprint import pprint df = pd.DataFrame(np.random.randin
Solution 1:
Use:
np.random.seed(21)
df = pd.DataFrame(np.random.randint(0,100,size=(10, 4)), columns=list('ABCD'))
If want filter by any value of condition, is necessary add DataFrame.any
for test at least one True
of boolean DataFrame
:
df1 = df[(df < 10).any(axis=1)]
print (df1)
A B C D
0 73 79 56 4
5 5 18 70 50
7 5 80 35 91
9 6 84 90 28
print (df < 10)
A B C D
0FalseFalseFalseTrue1FalseFalseFalseFalse2FalseFalseFalseFalse3FalseFalseFalseFalse4FalseFalseFalseFalse5TrueFalseFalseFalse6FalseFalseFalseFalse7TrueFalseFalseFalse8FalseFalseFalseFalse9TrueFalseFalseFalseprint ((df < 10).any(axis=1))
0True1False2False3False4False5True6False7True8False9True
dtype: bool
Post a Comment for "Filtering Rows Of A Dataframe Based On Values In Columns"